Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 25(10): 1300-1313, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36180791

RESUMO

Myelin plasticity occurs when newly formed and pre-existing oligodendrocytes remodel existing patterns of myelination. Myelin remodeling occurs in response to changes in neuronal activity and is required for learning and memory. However, the link between behavior-induced neuronal activity and circuit-specific changes in myelination remains unclear. Using longitudinal in vivo two-photon imaging and targeted labeling of learning-activated neurons in mice, we explore how the pattern of intermittent myelination is altered on individual cortical axons during learning of a dexterous reach task. We show that behavior-induced myelin plasticity is targeted to learning-activated axons and occurs in a staged response across cortical layers in the mouse primary motor cortex. During learning, myelin sheaths retract, which results in lengthening of nodes of Ranvier. Following motor learning, addition of newly formed myelin sheaths increases the number of continuous stretches of myelination. Computational modeling suggests that motor learning-induced myelin plasticity initially slows and subsequently increases axonal conduction speed. Finally, we show that both the magnitude and timing of nodal and myelin dynamics correlate with improvement of behavioral performance during motor learning. Thus, learning-induced and circuit-specific myelination changes may contribute to information encoding in neural circuits during motor learning.


Assuntos
Axônios , Bainha de Mielina , Animais , Axônios/fisiologia , Aprendizagem , Camundongos , Bainha de Mielina/fisiologia , Neurônios , Oligodendroglia/fisiologia
2.
Nat Neurosci ; 23(7): 819-831, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32424285

RESUMO

Oligodendrocyte loss in neurological disease leaves axons vulnerable to damage and degeneration, and activity-dependent myelination may represent an endogenous mechanism to improve remyelination following injury. Here we report that, while learning a forelimb reach task transiently suppresses oligodendrogenesis, it subsequently increases oligodendrocyte precursor cell differentiation, oligodendrocyte generation and myelin sheath remodeling in the forelimb motor cortex. Immediately following demyelination, neurons exhibit hyperexcitability, learning is impaired and behavioral intervention provides no benefit to remyelination. However, partial remyelination restores neuronal and behavioral function, allowing learning to enhance oligodendrogenesis, remyelination of denuded axons and the ability of surviving oligodendrocytes to generate new myelin sheaths. Previously considered controversial, we show that sheath generation by mature oligodendrocytes is not only possible but also increases myelin pattern preservation following demyelination, thus presenting a new target for therapeutic interventions. Together, our findings demonstrate that precisely timed motor learning improves recovery from demyelinating injury via enhanced remyelination from new and surviving oligodendrocytes.


Assuntos
Aprendizagem/fisiologia , Atividade Motora/fisiologia , Oligodendroglia/fisiologia , Recuperação de Função Fisiológica/fisiologia , Remielinização/fisiologia , Animais , Diferenciação Celular/fisiologia , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Camundongos , Camundongos Endogâmicos C57BL , Inibidores da Monoaminoxidase/toxicidade , Córtex Motor/fisiologia , Células Precursoras de Oligodendrócitos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...